A New Approach to Exploring Arctic-Extra Arctic Linkages Using ML

Balu Nadiga, LANL and Ben Kravitz, Indiana Univ. HiLAT-RASM

Arctic Atmosphere and Global Near-Surface Temperature

 Using JRA55 (1958 to 1979 6 hourly data with 60 day moving average)

• Examine teleconnections between

 Horizontally averaged (>72N) geopotential height (37 levels) and specific humidity (27 lvl²/_{so})

And 850mb temperature averaged over distin geographic regions

Using ML-based predictive models

• e.g., L'Heureux et al. 2017 find strong predictability related ENSO-AO relation in the North American Multimodel Ensemble

Mckenna et al., 2017

We consider three ML-based prediction systems

Notionally partition Arctic warming into local and remote components

- (global autonomous)
- Global evolution: $rac{dG}{dt} = F(G)$ Arctic-only evolution: $rac{dA}{dt} = f(A)$ (local autonomous)
- Arctic evolution with specified Extra-Arctic forcing:

$$rac{dA}{dt} = f(A) + g(E(t))$$
 (local non-autonomous)

Arctic Warming: Local vs. Remote Drivers

- If Arctic warming is dominated by local processes and feedbacks Arctic-local system $rac{dA}{dt}=f(A)$ would be most skilful
- If remote processes and feedbacks were important as well:
 skill(local) < skill(local w/ specified external forcing)

$$\mathcal{S}\left(rac{dA}{dt} = f(A)
ight) < \mathcal{S}\left(rac{dG}{dt} = F(G)
ight) < \mathcal{S}\left(rac{dA}{dt} = f(A) + g(E(t))
ight)$$

With ML-models, both skill measures (RMSE and ACC) show a role for remote forcing of Arctic warming

Long Training Period (12 years)
Validation and testing periods: 4 years each

Typical ML is data hungry: we are pursuing ML techniques for performance with limited data

Very short training Period (1 or 2 years) Validation and testing periods: 2 months each

Summary and Conclusions

- We are developing and applying new ML based techniques to investigate the issue of local vs. remote drivers of Arctic warming in the context of a small effort under the HiLAT-RASM project
- A limited preliminary study suggests a significant role for remote drivers
- Results from linear methods are confounding and need to be verified/debugged (didn't discuss in talk)
- This area is fertile for collaborations across the various RGMA projects/groups. Looking forward to them! Contact me at balu@lanl.gov

Comparison to State of the Art: LIM, FDT, CRF, DMD, Koopman Op.

Left: long (12 year) training; Right: short (1 year) training (caveat: in figure on right, frequent blow-ups have been eliminated)

LIM results argue for the dominance of local processes and feedbacks in determining Arctic warming (buggy?)

(LIM: Linear Inverse Modeling; FDT: Fluctuation Dissipation Theorem; CRF: Climate Response Function; DMD: Dynamic Mode Decomposition)